

Securing Data at Rest: Database Encryption Solution using
Empress Embedded Database

By: Srdjan Holovac
© Empress Software Inc.
 White Paper

Contents
Introduction .. 2

Importance of security ... 2
Protecting data at rest ... 2

Terminology... 2

Different Concepts of Empress Database Encryption Solution 4
Concept A: Implementing Hardware-Based Encryption Solution with Empress
Embedded Database ... 5

Concept B: Implementing Software-Based Encryption Solution with Empress
Embedded Database ... 6

How It Works ... 7

Unit of Encryption ... 8
Encrypting Binary Large Objects/ Character Large Objects 10

Encrypting Indexed Data ... 10

Type of Encryption ... 10

Key Management ... 10

Cipher Key Verification .. 11

Key Rotation/ Key Change Procedure .. 12

Performance and Size Considerations ... 12
Performance Considerations .. 12

Size Considerations ... 12

Embedded System Application Benchmark ... 14

Benchmark Database Size Results ... 15

Benchmark Performance Results .. 16
Secure Data at Rest in Embedded Systems ... 16

Use Case: Parking Ticket System ... 18
In Summary ... 22

Literature .. 22

Introduction

Importance of security

Enforcing data security is top priority for both governments and businesses
worldwide. Recent legislation in many countries has set new standards for
protecting customer information. There are standards for the security of medical
records and standards for the financial industry regarding privacy and security of
customers’ personal financial information.

How can this confidential data be protected?

New technology advances, including encryption, offer significant security
capability for confidential data protection.

Protecting data at rest

This paper focuses on security solutions for protecting data at rest, specifically
protection of data that resides in databases and stored in a persistent storage
device such as disk.

Even in-memory databases need to backup data and this data could end up in a
persistent storage device in plaintext.

Even many embedded devices that contain an embedded database hold
sensitive data that must be protected.

Encryption, the process of disguising data in such a way to hide its substance, is
a very effective way to achieve security for data at rest.

Implementation of database encryption raises several important points that must
be taken into consideration such as: Should the encryption be performed inside
the database engine, in the application where the data is generated or in a
hardware device? Should encryption keys be kept inside the database or
somewhere else where it may be more secure? Should the granularity of data
encryption be on a database, a table or a column? What are the performance
and size tradeoffs of different approaches?

This paper describes the implementation of the encryption solution using
Empress Embedded Database, summarizes the benefits of this solution for users,
and discusses the issues mentioned above.

Terminology

The definitions of the basic terms are simplified for the usage in this paper. The
consulted terminology sources were: [PKCS], [FIPS] and [BRUCE] (see
Bibliography).

Encryption: The process of disguising data in such a way to hide its substance.

Cipher (Cryptographic Algorithm): The mathematical function used for
encryption and decryption.

Cipher Key (Cryptographic Key, Encryption, Key): A parameter used in
conjunction with a cipher that determines:

 the transformation of plaintext data into ciphertext data,

 the transformation of ciphertext data into plaintext data.

Plaintext (Cleartext): A block of data that has not been encrypted.

Ciphertext: A block of data that has been encrypted.

Decryption: The process of transforming ciphertext back into plaintext.

Padding: A string, typically added when the plaintext block is short. For example,
if the block length is 4 bytes and the cipher requires 16 bytes, then 12 bytes of
padding must be added. The padding string may contain zeros, alternating zeros
and ones, or some other pattern.

Figure 1. Encryption and Decryption

Figure 1 describes the process of encrypting and decrypting data. There are two
general types of key-based algorithms: symmetric and public-key. In the case of
most symmetric ciphers, the encryption and decryption keys are the same (as
shown in Figure 1). Empress utilizes symmetric ciphers for its encryption solution.

Different Concepts of Empress Database Encryption Solution

The Empress database encryption solution is based on performing the
encryption/decryption process either:

A) by a hardware-based solution using a hardware security
device/appliance (Figure 2); For example, Empress Embedded
Database can be configured with DataSecure appliances, dedicated
hardware systems provided by Ingrian Networks [NAE]);

or

B) by a software-based solution using a Security Library that contains an
encryption algorithm (Figure 3); For example, Empress Embedded
Database can be configured with OpenSSL cryptographic library,

Microsoft Cryptographic Providers, libgcrypt, a general purpose library
that contains various cryptographic algorithms, etc.

Concept A: Implementing Hardware-Based Encryption Solution
with Empress Embedded Database

Empress Embedded Database incorporates C API calls from the Public Key
Cryptography Standard (PKCS #11) that interface with the Security Adapter
inside its Database Engine so that the encryption/decryption process is hidden
from users [PKCS].

PKCS is a suite of specifications developed by RSA Security in conjunction with
industry, academic, and government representatives. PKCS #11 is the
specification for the cryptographic token interface standard, defining a
technology-independent programming interface for cryptographic applications.

Using the PKCS #11 standardized approach Empress Embedded Database is
effectively integrated with the Ingrian Security Adapter – NAE PKCS #11
Provider [NAE]. Ingrian NAE Provider initiates encrypt and decrypt operations
inside the Ingrian Security Device/Appliance, such as DataSecure. Both cipher
key and cipher are contained inside the Security Device. DataSecure offers
support for leading, standards-based ciphers: AES, 3DES, RSA and others.

Figure 2 describes the overall concept and placement of the Security Adapter in
different Empress application scenarios. Empress standalone applications and
Empress utilities, such as empsql or empclean, are directly linked to the Security
Adapter. In the client-server scenario, such as ODBC and JDBC applications in
Figure 2, the Security Adapter is linked to the Empress Connectivity Server.

Figure 2. Concept A: Database Encryption Concept with a Security Device

Concept B: Implementing Software-Based Encryption Solution
with Empress Embedded Database

Figure 3 describes the second concept of adding encryption capability to the
Empress Embedded Database. This is a pure software solution that involves a
Security Library, which contains a cipher. Empress Embedded Database is
effectively integrated with several “crypto” libraries (such as OpenSSL crypto
library), which performs data encryption and decryption. A cipher key is held
either in a protected place in the file system, application/process environment or
with a user.

Empress standalone applications and Empress utilities, such as empsql or
empclean, are directly linked to the Security Library. In the client-server scenario,
such as with ODBC and JDBC applications (Figure 3), the Security Library is
linked to the Empress Connectivity Server.

Figure 3. Concept B: Database Encryption Concept with a Security Library

How It Works

The following are the basic postulates regarding adding encryption to the
Empress Embedded Database. They apply to both concepts described above.

The encryption is done on a column level. Users have the capability to define
which columns are to be encrypted.

Let’s assume a scenario where the database table customer has four columns
cust_no, name, ssn and address, where customer number cust_no and social
security number ssn have to be encrypted. To create such a table in an Empress
database one would use the SQL CREATE TABLE command:

CREATE TABLE customer (

 cust_no LONGINTEGER NOT NULL ENCRYPTED,

 name CHAR(20),

 ssn CHAR(9) ENCRYPTED,

 address TEXT);

Since the column cust_no requires being searchable, an index has to be created
too:

CREATE UNIQUE INDEX customer_index ON customer(cust_no);

Empress Embedded Database will encrypt data for the columns cust_no and
ssn and decrypt data from those columns when the application needs it.

User applications that access table customer need NO changing. The same
scenario works for all interfaces that Empress offers and also for Empress
utilities.

Furthermore, users are given the ability to toggle between an encrypted and an
unencrypted database by altering the database schema. Altering the schema
changes the column encrypted properties. For example:

ALTER TABLE customer CHANGE ssn NOT ENCRYPTED;

Or to define the encryption on the column again:

ALTER TABLE customer CHANGE ssn ENCRYPTED;

One ALTER command can be issued in order to define encryption on multiple
columns at once.

Users do NOT have to change the data type or the size of the encrypted column.

Unit of Encryption

How much data must be encrypted to provide security? Empress encryption
provides flexibility to accommodate for the varying levels of encryption granularity.
Users do not have to encrypt the whole database or the whole table.

Encryption is done on a column level in the database table.

Empress groups all encrypted columns in a table record.

Padding is done on the group of encrypted columns instead of padding on every
encrypted column.

An Empress database is a directory in a file system. Users can have multiple
databases on the same machine and switch databases as needed.

The unit of encryption varies depending on the type of file. Types of files that
contain table column data in an Empress database are: main data (.rel) files

overflow data (.dtf) files, index data (.ix) files, transaction logs, recovery logs,
backup files and temporary files.

File headers which contain no user data are not encrypted.

Figure 4 illustrates an example scenario that describes encrypted parts and non-
encrypted parts of the files related to the table customer in the Empress
database.

Figure 4. Encrypted and Unencrypted Parts of the Empress Database Table
customer

There will be NO data from encrypted columns stored on the disk in plaintext.

Empress allows encryption on any column data type available in Empress
Embedded Database (e.g. CHAR, TEXT, CLOB, BULK, BLOB, INTEGER,
LONGINTEGER, REAL, DOUBLE PRECISION, DECIMAL, DATE, TIME,
MICROSECONDTIMESTAMP, etc.).

Encrypting Binary Large Objects/ Character Large Objects

Some Empress Embedded Database data types require more work to encrypt or
decrypt data. These data types are for storing Binary Large Objects (BLOBs) and
for storing Character Large Objects (CLOBs). The amount of data stored in the
columns of these data types may be very large. Empress does not impose limits
on the size of those objects and does not force users to split data into chunks
when dealing with large volumes of binary or text data.

Encrypting Indexed Data

Users have the ability to create indexes on the encrypted columns of any
Empress data type that can be normally indexed. Empress has designed
encryption in its indexes to make indexes usable for all kinds of searches, not
only for equality searches. Hence, there is no difference in the usability of
indexes for searches on encrypted or unencrypted columns.

Type of Encryption

For encrypting and decrypting data, symmetric cipher keys are used.

Various public domain ciphers, including AES are standard with Empress and are
user-selectable.

Empress can embed user-defined ciphers on request.

The recommended cryptographic algorithm is Advanced Encryption Standard
(AES). AES uses one of the 3 key lengths: 128, 192 and 256. The larger the key
length the more computation it requires, and the greater security it provides.

All data in encrypted columns in a database is encrypted with the same cipher.

All the encrypted columns in a database are encrypted with one cipher key

Encryption is specified for a database when it is created. The cipher is selected
at the time of creation and the selection is stored in the database. The cipher and
the key should not be changed thereafter except by using the special Empress
Key Rotation (Key Change) procedure.

Key Management

The Empress Embedded Database engine needs to obtain a cipher key for a
given database. One of the essential key management questions is: Where
should a cipher key reside? Some options to store a cipher key are:

1. in a database
2. outside of a database in persistent storage (e.g. access-protected files)
3. in memory
4. prompt for it each time encryption is needed
5. in a hardware security device

In Figure 2 Concept A, all cipher keys are stored in the Ingrian DataSecure
Appliance. In order to encrypt/decrypt data in the Empress database, Empress
Embedded Database must obtain key info (i.e. user name, password, key name)
to pass to the Ingrian DataSecure Appliance in order to authenticate itself and
gain access to the requested cipher key.

In Figure 3 Concept B, Empress Embedded Database must obtain a cipher key
to pass to a Security Library.

The following options show how to address the requirements for both concepts.

1) The Empress variable MSCIPHERKEYINFO can be set to <database, key
info> pairs (Concept A) or to <database, key> pairs (Concept B). Hence, key
info or key resides in memory (i.e. environment of the Empress
Application/Utility/Server).

2) The Empress variable MSCIPHERKEYINFOFILE can be set to the name of a
file containing either key info (Concept A) or cipher key (Concept B). The file is
called credentials file.

3) An additional option is to input key info or the key itself each time Empress
application/utility is restarted.

Cipher Key Verification

A means of verifying that a cipher key is correct for a database is highly desirable
so that meaningless data is not produced with an incorrect cipher key.

Concept A

During database creation, key info is encrypted with the cipher key it relates to
and stored in the database. Thereafter, key info is encrypted with the cipher key
it relates to and compared to the copy in the database to verify that it is correct
for that database. If the key info is incorrect, a sleep period of several seconds is
enforced before reporting the error.

Concept B

During a database creation, the cipher key is encrypted with itself and stored in
the database. Thereafter, a given cipher key is encrypted with itself and
compared to the copy in the database to verify that it is correct for that database.
If the key is incorrect, a sleep period of several seconds is enforced before
reporting the error.

Key Rotation/ Key Change Procedure

Empress provides a procedure for an off-line key rotation. The procedure is
callable via a stand-alone script or as a sequence of calls inside the application
and may be used for key rotation, either periodic or on an as needed basis.

The database needs to be off-line in order to re-encrypt all of the sensitive data
within the database with a new cipher key. The following steps occur:

1. A second key is generated in the Security Device or in the credentials file.
2. A utility reads the encrypted data from the database, decrypts the

information using the first key, encrypts with the second key, and writes
the new encrypted data back to the database.

3. The key parameters are updated in the database to reflect the usage of
the second key.

Performance and Size Considerations

Performance Considerations

What is an acceptable trade-off between data security and application
performance?

The Empress encryption strategy includes multiple design and optimization
consideration in order to ease the trade-off between data security and application
performance.

Empress encryption initiates encrypt/decrypt API calls inside the Empress Engine.
This preferable design offers a more efficient solution and requires much less
overhead than other design alternatives such as via stored procedures/triggers.

Size Considerations

Empress groups columns that are to be encrypted at the record level to optimize
the encryption process, thus decreasing the number of times it has to

encrypt/decrypt data. See Figure 5 for sample Internal Empress Record Layout
Optimization.

Figure 5. Internal Empress Record Layout Optimization

Empress encryption solution also saves space. Space is an issue with column
encryption because, in general, encrypted columns are larger than unencrypted
columns.

The overhead in an encrypted database size compared to the unencrypted
database size is largely dependant on the cipher used. Let’s assume that cipher
requires padding to the nearest 16 bytes. Hence, a record of 508 bytes would
have to be extended to 512 bytes, making the overhead insignificant.

This internal optimization with grouping of encrypted columns is not visible to
users. Hence, the original order of table columns is preserved. If for example, a

user displays a table definition or retrieves data from a table, the user still get the
original column order:

1* display customer all;

*** Table: customer ***

 Attributes:

 cust_no longinteger Not Null Encrypted

 name character(20,1)

 ssn character(9,1) Encrypted

 address text(20,1024,1024,1)

 Creator: srdjan

 Indices: UNIQUE BTREE customer_index ON (cust_no)

. . .

2* select from customer;

 cust_no name ssn address

. . .

Embedded System Application Benchmark

Database size and performance were evaluated on a typical embedded system
for common database access tasks in embedded system application.

The database db has two tables jobinfo and hostinfo:

 EMPRESS V10.20

 (c) Copyright Empress Software Inc. 1983, 2012

1* display db all into pager;

**** Database: db ****

*** Table: hostinfo ***

 jobid integer

 ipaddr character(16)

 macaddr character(16)

 protocol character(32)

 servicetype tinyint

*** Table: jobinfo ***

 id integer

 pages integer

 quality_counts integer

 copy_counts integer

 login integer

 job_name character(128)

 job_user character(32)

 host character(32)

 os character(32)

 driver character(32)

 printer character(32)

 application character(32)

 file character(32)

 document character(128)

 custom_string character(32)

 codeid character(4)

 priority tinyint

 submission character(128)

 service_number tinyint

 group_name tinyint

 authentification_id character(32)

 system_name character(32)

 restriction_support tinyint

 restriction tinyint

 status tinyint

 job_date time

Another database edb was created with encrypted data. The database edb also

has two tables: jobinfo with the attribute authentification_id encrypted

and hostinfo with the attribute macaddr encrypted.

Benchmark Database Size Results

The non-encrypted database db size is 384 KB, while the encrypted database
edb size is 392 KB. If we create an index on the attribute macaddr in the table
hostinfo, the database sizes are shown in the Table 1.

Non-encrypted Database db

Size (KB)

Encrypted Database
edb

Size (KB)

Two tables 384 392

Two tables with
an index

416 424

Table 1: Database Size (KB) for Non-encrypted and Encrypted Database with
and without an index

Benchmark Performance Results

Performance was tested by performing standard SQL commands such as
SELECT, INSERT, UPDATE and DELETE against non-encrypted database db
versus encrypted database edb.

Results are given in the Table 2:

SQL Task

Non-encrypted
Database
Performance
(seconds)

Encrypted
Database
Performance
(seconds)

SELECT * FROM jobinfo WHERE pages >100; 0.006 0.007

SELECT * FROM hostinfo WHERE ipaddr > ‘19*’; 0.001 0.001

INSERT INTO hostinfo VALUES
(533,"191.234.33.45","00000000000008e5",
"000000000001232abc0000000043",1);

0.001 0.001

UPDATE hostinfo SET ipaddr="191.234.33.46" WHERE
jobid=533;

0.001 0.001

DELETE hostinfo WHERE jobid=533;

0.001 0.001

Table 2: Performance results for different SQL tasks performed against non-
encrypted and encrypted database

Secure Data at Rest in Embedded Systems

Single Key per Database Approach

Key management in embedded systems imposes great challenges.
The current Empress security strategy is to use a single cipher key for each
database. This simplifies key management and allows for performance
optimizations when Empress issues encrypt/decrypt calls. This strategy is very
beneficial for embedded systems since application developer doesn’t need to
cope with the complexities of dealing with multiple keys per single database.

Furthermore, the approach implemented in the embedded system affects the
level of inconvenience imposed on end users. If the way sensitive data is stored
is too hard to use, it will discourage users from using them. Some aspects of the
user model examined in [SARAH] include:

 the number of times a person must enter an encryption key per session;

 the ease with which the method is invoked; and

 the number of encryption keys or passwords a person or a system must
remember

With Empress single key approach per database, the ease-of-use is greatly
enhanced.

Callable Admin API

Another useful Empress addition is Callable Admin API. Callable Admin API
functions provide the support for the functionality given by Empress database
administration utilities. Typical embedded system application cannot run
Empress utilities as separate processes. Using Empress Callable Admin
functions is the way for applications to run database administration tasks.

For example, for Android Embedded systems, Empress Callable Admin functions
are implemented in Java. The following functions are supported via the
DatabaseAdmin class:

createDB() - create a database
removeDB() - remove a database
exportDB() - export table(s) from a database
importDB() - import table(s) into a database
checkAndRepair() - check and repair database issues
encryptionSupported() - check whether encryption is supported
getCiphers() - get the list of all supported ciphers

Empress utilities can be invoked as callable administration functions when the
application requires full control of database administration tasks.

Empress Callable Admin functions also support encryption. In the following text
an example of exportDB function is given which includes encryption related
parameters for Java and Android frameworks.

public static void exportDB (

 String dbName,

 String cipherKey,

 String[] tables,

 String fileName,

 String expCipher,

 String expCipherKey)

throws SQLException

Parameters:
dbName: the physical path to the database
cipherKey: the cipher key hex string of the database if the database

is encrypted, null otherwise, e.g. "b1c23a3beefa4312".
tables: a list of tables to be exported. If it is null, all tables will

be exported.

fileName: the physical path to the output file.
expCipher: the string that contains the cipher name, e.g. "AES256".
expCipherKey: the cipher key hex string that will be used to encrypt

the output file, e.g. "112244". If null, there will be no encryption on
the output file.

Examples:
Export tables 't1' and 't2' from /sdcard/db1 to /sdcard/db1.exp

DatabaseAdmin.exportDB("/mnt/sdcard/db1",
new String[]{"t1","t2"}, "/sdcard/db1.exp");

Export all tables from /sdcard/db1 to /sdcard/db1.exp:

DatabaseAdmin.exportDB("/mnt/sdcard/db1",
"/sdcard/db1.exp");

Export all tables from /sdcard/db1 to /sdcard/db1.exp and encrypt the output
file with the cipher AES256 and cipher key equals "112244"

DatabaseAdmin.exportDB("/mnt/sdcard/db1", null,
null, "/sdcard/db1.exp", "AES256" ,"112244");

Use Case: Parking Ticket System

In the following text a use case for Empress Encryption for a parking ticket
system is described.

In Summary

The main benefits for implementing the encryption solution using Empress
Embedded Database are as follows:

 Secure all database data. A solution for protecting user data in a database
including protection of all logs and backup files.

 Eliminate the potential that data at rest could be read by another party and
minimize bad press, loss of customers, government intervention.

 Implement an efficient security solution. Small performance overhead

when performing encryption/decryption using the pure software solution
or using a hardware device/appliance. In addition, Empress with
encryption, keeps the database size increase minimal.

 No change needed to application code for already written applications that
use data in an unencrypted Empress database.

 No need to add external code in the database such as stored procedures,
triggers or views to accommodate encryption.

 Painless solution for users who choose to convert their non-secure
database solution to a secure one.

Literature

[BRUCE] Bruce Schneier: Applied Cryptography (Second Edition), John

Wiley & Sons, 1996 ISBN 0-471-11709-9
[FIPS] FIPS PUB 140-2, Security Requirements for Cryptographic

Modules, NIST, 2001.
[PKCS] PKCS #11 v2.11: Cryptographic Token Interface Standard, RSA

Laboratories, Revision 1  November 2001
 [NAE] NAE Developer Guide for the PKCS #11 Provider, Ingrian Networks,

2005.
[SARAH] Sarah M. Diesburg, An-I Andy Wang: Modules, A Survey of

Confidential Data Storage and Deletion Methods, Journal ACM
Computing Surveys, Volume 43 Issue 1, 2010.

